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Motivation: Network Traffic	


•  Data:	
  	
  

  which	
  source	
  IP	
  contacted	
  what	
  des7na7on	
  IP,	
  on	
  what	
  
Port	
  #	
  and	
  when	
  

•  How	
  can	
  we	
  find	
  possible	
  network	
  a7acks	
  on	
  this,	
  
poten8ally	
  large	
  scale	
  data?	
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Motivation: Citation Network	


•  DBLP	
  data:	
  

 Who	
  publishes	
  what	
  in	
  which	
  conference	
  
  In	
  which	
  conferences	
  an	
  author	
  publishes	
  every	
  year	
  

•  How	
  can	
  we	
  automa8cally	
  	
  
	
  	
  	
  	
  cluster	
  authors	
  with	
  	
  
	
  	
  	
  	
  similar	
  research	
  interests?	
  

•  How	
  can	
  we	
  spot	
  “bridge	
  	
  
	
  	
  	
  	
  	
  authors”	
  who	
  at	
  some	
  	
  
	
  	
  	
  	
  point	
  change	
  fields?	
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Motivation: Social Networks	


•  Facebook	
  Data	
  (	
  ~800	
  Million	
  users	
  )	
  

  who	
  posted	
  on	
  what	
  wall	
  and	
  when.	
  

•  How	
  do	
  we	
  spot	
  interes8ng	
  pa7erns	
  &	
  anomalies	
  in	
  
this	
  very	
  large	
  network?	
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Our	
  approach:	
  a	
  powerful	
  tool	
  called	
  TENSORS	
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How to answer these questions?	





Outline	



 Introduc>on	
  to	
  Tensors	
  
	
  	
  	
  	
  Applica8ons	
  

	
  	
  	
  	
  Conclusions	
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Introduction to Tensors (1)	


•  One	
  answer	
  to	
  the	
  previous	
  problems	
  is	
  Tensors!	
  

•  Tensors	
  are	
  mul8dimensional	
  generaliza8ons	
  of	
  matrices	
  
  A	
  3-­‐way	
  tensor	
  is	
  a	
  3-­‐dimensional	
  matrix	
  or	
  “cube”	
  

•  Lots	
  of	
  data	
  can	
  be	
  modeled	
  as	
  a	
  tensor:	
  

  Time-­‐evolving	
  graphs/social	
  networks,	
  Mul8-­‐aspect	
  data	
  
e.g.	
  author,	
  paper,	
  conference	
  or	
  src,	
  dst,	
  port#	
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authors	
  

papers	
  

Src	
  IP	
  

Dst	
  IP	
  

Wall	
  

Users	
  who	
  post	
  on	
  that	
  Wall	
  

one of the most tangible examples where tensors can be used
nicely is the case of time-evolving graphs. Our contributions
are the following:

• We focus on how to use TENSORSPLAT, which is based
on “PARAFAC”, a highly interpretable tensor decompo-
sition method, in order to spot anomalies in data, and

• Report results in 3 different settings: (a) a small subgraph
of the co-authorship DBLP network, (b) the time-evolving
DBLP network that spans 49 years, and (c) LBNL, a big
network traffic dataset.

The following sections are organized in the usual way: we
first explain the theoretical concepts of our proposed method,
present the experimental results and describe the related work.

II. BACKGROUND

In this section, we provide the theoretical background
required, in order to get a grasp of tensors and tensor decom-
positions. A very concise and comprehensive tutorial about
tensors may be found in [19]. Table I presents the notation
that we use in this section.

TABLE I
DESCRIPTION OF MAJOR SYMBOLS.

Notation Example Description
italic, lowercase letters a scalar
bold, lowercase letters x column vector
bold capital letters A matrix
Euler script letters X tensor
superscript x(I), X(I×J), dimensions of vector,

X(I×J×K) matrix, or tensor
index x(i), X(i, j), corresponding element of

X(i, j, k) vector, matrix, or tensor

A. Tensors
An n mode/way tensor is essentially a structure that is

indexed by n variables. In particular, a 2-way tensor is nothing
but a regular matrix, whereas a 3-way tensor may be viewed
as a data cube. For the purposes of background exposition, we
are going to focus on 3-way tensors, because they are easier to
visualize; however, everything discussed in the sequel readily
extends to higher ways, and in fact, one of our data mining
case studies operates on a 4-way tensor.

B. Matrix decomposition
In order to demonstrate the concept of a tensor decom-

position, we will at first diverge to describe how one may
decompose a matrix and how this relates to well established
concepts in Information Retrieval and Data Mining. In par-
ticular, consider an I × J matrix X; for instance, this matrix
may correspond to an author by conference matrix, where the
(i, j)-th entry indicates that author i has published a certain
number of papers in conference j.

First, we need to define the Singular Value Decomposition
(SVD) of X, which states that any matrix X may be decom-
posed in the following way

X = UΣVT

where U,V are orthonormal matrices and Σ is diagonal, with
non-negative values on the diagonal, the so-called singular
values of X. In [16], it is shown that if we truncate the SVD
of X to a rank f lower than the actual rank of the matrix, this
yields the optimal low rank approximation of the matrix, in
the least squares sense.

If we call matrix A = UΣ and matrix B = V then we may
rewrite the decomposition as:

X ≈ a1b
T
1 · · · aFbT

F

where equality holds if F =rank(X). The above expression is
essentially a bilinear decomposition of X. We chose to obtain
this bilinear decomposition through the SVD, but in fact, there
exist numerous different approaches, e.g. the Non-Negative
Matrix Factorization [20].

At this point, one may wonder what is the practicality of
the above formulation. The answer was initially given in [15],
where Latent Semantic Indexing (LSI) is introduced. In a
nutshell, what LSI suggests is the following: Consider the
author-by-conference example that we mentioned. If we take a
rank f approximation of this matrix, then, in a sense, we force
all authors and all conferences to be expressed using a basis
of f vectors. In this way, we are grouping together authors
and conferences that are expressed similarly in the matrix, i.e.
they are ”close”, usually, with respect to euclidean distance.

C. Tensor decomposition

Having introduced the SVD and the bilinear decomposition,
we are ready to extend our paradigm to the tensor regime.
However, there is no single decomposition that fully extends
the matrix SVD; we choose to elaborate on the most intuitive
and easily interpretable of all, the PARAFAC decomposition.

Consider a three way tensor X of dimensions I × J ×K;
The PARAFAC [17], [10] (also known as CP or trilinear)

decomposition of X in F components is an immediate exten-
sion of the bilinear decomposition, for tensors, i.e.

X ≈
F�

f=1

af ◦ bf ◦ cf

The three way outer product of vectors a,b, c is defined as

[a ◦ b ◦ c](i, j, k) = a(i)b(j)c(k)

X 
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"!"
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##"
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Fig. 2. The PARAFAC decomposition of X.
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Introduction to Tensors (2)	



•  In	
  the	
  previous	
  slide,	
  we	
  showed	
  examples	
  of	
  
3-­‐way	
  tensors.	
  

•  Can	
  have	
  higher	
  ways	
  too!	
  
 E.g	
  Network	
  traffic	
  data	
  is	
  in	
  fact	
  4-­‐way:	
  

  Src	
  IP,	
  Dst	
  IP,	
  Port	
  #	
  ,	
  Timestamp	
  

•  Harder	
  to	
  visualize	
  on	
  paper	
  
 But	
  same	
  principles	
  apply	
  
 Same	
  kind	
  of	
  analysis!	
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Introduction to Tensors (3)	


•  PARAFAC	
  decomposi8on 	
  	
  

  Decompose	
  a	
  tensor	
  into	
  sum	
  of	
  outer	
  products/rank	
  1	
  
tensors	
  

  Each	
  rank	
  1	
  tensor	
  is	
  a	
  different	
  group/”concept”	
  
  This	
  way,	
  we	
  can	
  do	
  soH	
  clustering!	
  

  “Similar”	
  to	
  the	
  Singular	
  Value	
  Decomposi8on	
  in	
  the	
  
matrix	
  case	
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Introduction to Tensors (4)	


•  Each	
  a,	
  b,	
  c	
  triplet	
  can	
  be	
  seen	
  as	
  “soc”	
  membership	
  to	
  a	
  cluster	
  
•  If	
  we	
  have	
  4-­‐way	
  tensor	
  (e.g.	
  Network	
  Traffic),	
  we	
  have	
  a	
  fourth	
  

vector	
  d	
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one of the most tangible examples where tensors can be used
nicely is the case of time-evolving graphs. Our contributions
are the following:

• We focus on how to use TENSORSPLAT, which is based
on “PARAFAC”, a highly interpretable tensor decompo-
sition method, in order to spot anomalies in data, and

• Report results in 3 different settings: (a) a small subgraph
of the co-authorship DBLP network, (b) the time-evolving
DBLP network that spans 49 years, and (c) LBNL, a big
network traffic dataset.

The following sections are organized in the usual way: we
first explain the theoretical concepts of our proposed method,
present the experimental results and describe the related work.

II. BACKGROUND

In this section, we provide the theoretical background
required, in order to get a grasp of tensors and tensor decom-
positions. A very concise and comprehensive tutorial about
tensors may be found in [19]. Table I presents the notation
that we use in this section.

TABLE I
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superscript x(I), X(I×J), dimensions of vector,

X(I×J×K) matrix, or tensor
index x(i), X(i, j), corresponding element of

X(i, j, k) vector, matrix, or tensor

A. Tensors
An n mode/way tensor is essentially a structure that is

indexed by n variables. In particular, a 2-way tensor is nothing
but a regular matrix, whereas a 3-way tensor may be viewed
as a data cube. For the purposes of background exposition, we
are going to focus on 3-way tensors, because they are easier to
visualize; however, everything discussed in the sequel readily
extends to higher ways, and in fact, one of our data mining
case studies operates on a 4-way tensor.

B. Matrix decomposition
In order to demonstrate the concept of a tensor decom-

position, we will at first diverge to describe how one may
decompose a matrix and how this relates to well established
concepts in Information Retrieval and Data Mining. In par-
ticular, consider an I × J matrix X; for instance, this matrix
may correspond to an author by conference matrix, where the
(i, j)-th entry indicates that author i has published a certain
number of papers in conference j.

First, we need to define the Singular Value Decomposition
(SVD) of X, which states that any matrix X may be decom-
posed in the following way

X = UΣVT

where U,V are orthonormal matrices and Σ is diagonal, with
non-negative values on the diagonal, the so-called singular
values of X. In [16], it is shown that if we truncate the SVD
of X to a rank f lower than the actual rank of the matrix, this
yields the optimal low rank approximation of the matrix, in
the least squares sense.

If we call matrix A = UΣ and matrix B = V then we may
rewrite the decomposition as:

X ≈ a1b
T
1 · · · aFbT

F

where equality holds if F =rank(X). The above expression is
essentially a bilinear decomposition of X. We chose to obtain
this bilinear decomposition through the SVD, but in fact, there
exist numerous different approaches, e.g. the Non-Negative
Matrix Factorization [20].

At this point, one may wonder what is the practicality of
the above formulation. The answer was initially given in [15],
where Latent Semantic Indexing (LSI) is introduced. In a
nutshell, what LSI suggests is the following: Consider the
author-by-conference example that we mentioned. If we take a
rank f approximation of this matrix, then, in a sense, we force
all authors and all conferences to be expressed using a basis
of f vectors. In this way, we are grouping together authors
and conferences that are expressed similarly in the matrix, i.e.
they are ”close”, usually, with respect to euclidean distance.

C. Tensor decomposition

Having introduced the SVD and the bilinear decomposition,
we are ready to extend our paradigm to the tensor regime.
However, there is no single decomposition that fully extends
the matrix SVD; we choose to elaborate on the most intuitive
and easily interpretable of all, the PARAFAC decomposition.

Consider a three way tensor X of dimensions I × J ×K;
The PARAFAC [17], [10] (also known as CP or trilinear)

decomposition of X in F components is an immediate exten-
sion of the bilinear decomposition, for tensors, i.e.

X ≈
F�

f=1

af ◦ bf ◦ cf

The three way outer product of vectors a,b, c is defined as

[a ◦ b ◦ c](i, j, k) = a(i)b(j)c(k)

X 

!!"

"!"

#!"

!#"

"#"

##"

$%&%$%$"

Fig. 2. The PARAFAC decomposition of X.

In	
  the	
  previous	
  example	
  
(author,	
  paper,	
  
conference):	
  

Authors	
  that	
  belong	
  to	
  the	
  
cluster	
  

Papers	
  that	
  belong	
  to	
  the	
  
cluster	
  

Conferences	
  that	
  belong	
  to	
  the	
  
cluster	
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•  We	
  use	
  PARAFAC	
  with	
  Non-­‐nega8vity	
  (NN)	
  
constraints	
  
 NN	
  is	
  important	
  for	
  interpreta8on	
  (soc	
  clustering	
  
membership	
  can’t	
  be	
  nega8ve)	
  

•  We	
  use	
  the	
  Tensor	
  Toolbox	
  for	
  Matlab	
  which	
  is	
  
able	
  to	
  handle	
  efficiently	
  tensors	
  with	
  sparse	
  
representa8on	
  
 Download	
  at:	
  
hNp://www.sandia.gov/~tgkolda/TensorToolbox/
index-­‐2.5.html	
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Application 1: Change Detection 
over Time	



1986 1988 1990 1992 1994 1996 1998 2000 2002 2004 20060
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0.4
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Year

Change Detection

 

 

ICDE, SIGMOD, VLDB
CIKM,ECIR,ICDE,ICDM,IJCAI,JCDL,KDD,SIGIR, WWW Point of

change
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• 	
  1st	
  component:	
  Database	
  conferences	
  
• 	
  2nd	
  component:	
  Data	
  mining	
  venues	
  
• 	
  Spo7ed	
  known	
  professor	
  who	
  changed	
  area	
  of	
  research.	
  



Application 2: Anomaly Detection in 
LBNL Network Traffic Data	
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bot-­‐a
7ack

s	
  

burst
-­‐of-­‐a

c8vit
y	
  

Each	
  row	
  is	
  one	
  of	
  the	
  
PARAFAC	
  vectors	
  	
  



Application 3: Anomaly Detection in 
Facebook	
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Birth
day-­‐l

ike	
  e
vent!

	
  

Each	
  row	
  is	
  one	
  of	
  the	
  
PARAFAC	
  vectors	
  	
  

One	
  person’s	
  Wall	
  

Mul8ple	
  friends	
  
pos8ng	
  on	
  that	
  
Wall	
  

On	
  only	
  one	
  day	
  



Application 3: Clustering in DBLP	
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• 	
  clusters	
  of	
  authors	
  publishing	
  at	
  the	
  same	
  venues	
  
• 	
  advisor-­‐advisee	
  rela8onship	
  between	
  clustered	
  authors	
  

• e.g.	
  Christos	
  Faloutsos	
  and	
  {Jure	
  Leskovec,	
  Hanghang	
  Tong}	
  



Outline	
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•  We	
  propose	
  a	
  powerful	
  way	
  of	
  modeling	
  data	
  
that	
  enables	
  us	
  to	
  do:	
  
 Clustering	
  

 Clustering	
  authors	
  on	
  the	
  DBLP	
  network	
  
 Anomaly	
  Detec8on	
  

 Detec8ng	
  network	
  a7acks	
  and	
  anomalies	
  on	
  Facebook	
  

 Change	
  Detec8on	
  in	
  8me	
  
 Detec8ng	
  bridge	
  authors	
  on	
  DBLP	
  who	
  gradually	
  switch	
  
fields.	
  



The End	


	
  Thank	
  you!	
  	
  

For	
  ques>ons,	
  
please	
  drop	
  us	
  an	
  

e-­‐mail.	
  
Special	
  Tanks	
  to	
  

Dimitra	
  and	
  Kostas!	
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